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Abstract—In this paper, a generalized two-dimensional formu-
lation for solving planar guiding structures is presented. The for-
mulation is capable of analyzing guiding structures consisting of an
arbitrary number of slots and strips with arbitrary width, thick-
ness, and conductivity in a full-wave regime. Integral equations
solved with the method of moments in the spatial domain are used
in the analysis. All information related to the fundamental modes
of the guiding structure are available from the presented theory.
These information include (for each mode) the propagation con-
stant, electric and magnetic current distribution, modal power, and
the characteristic impedance. Numerical results for a number of
planar guiding structures are presented, which validate the pro-
posed theoretical formulation.

Index Terms—Integral equation formulation, method of
moments (MoM), planar guiding structures.

I. INTRODUCTION

ADVANCES IN packaging and integrated circuit tech-
nology force the lines used as interconnects between

the systems’ components to be very close to each other. As a
consequence, the mutual coupling between these lines is no
longer negligible. This necessitates treating them as a single
guiding structure capable of supporting several modes, rather
than several isolated transmission lines. Also, the intensive
amount of data transmission in high-speed digital commu-
nications requires studying the dispersion characteristics of
the fundamental modes of a planar guiding structure very
carefully for a precise design. These technological and design
considerations explain the interest given by several authors in
the past two decades toward planar guiding structures. Several
numerical techniques have been applied to planar guiding
structure problems. These techniques can be classified into two
main categories: 1) the quasi-TEM, or quasi-static, approach
and 2) the full-wave approach.

The quasi-static approach simplifies the formulation. It can
be considered as a low-frequency approximation which neglects
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the longitudinal electric and magnetic fields supported by the
guiding structure [1], [2]. These longitudinal field components
result in the well-known physical dispersion phenomenon. As
the operating frequency increases, the dispersion characteristics
of the guiding modes become of practical importance for a pre-
cise design for communication systems. These requirements au-
tomatically lead to the full-wave approach.

The full-wave approach can be further categorized into: 1) the
differential equation formulation and 2) the integral equation
formulation. In the differential equation formulation, the un-
knowns to be solved for are the electromagnetic fields in a com-
putation volume [3], [4]. As one would expect, this formulation
is quite memory and computation time consuming. The second
category within the full-wave approach is the integral equation
formulation. This formulation solves for the unknown electric
and magnetic currents on electric conductors and slots, respec-
tively. After obtaining the unknown electric and magnetic cur-
rent, the electromagnetic field becomes available in the domain
of interest. Obviously, the integral equation formulation is nu-
merically more efficient than the differential equation formula-
tion as the former solves a surface problem instead of a volume
problem. The integral equation formulation is usually solved
using the method of moments (MoM). In the MoM, the integral
equation formulation is transformed into a matrix formulation,
in which the unknown currents are discretized.

The integral equation solved by the MoM can be formulated
either in the spectral or in the spatial domain. The difference be-
tween these two classes is in the filling of the coupling matrix. In
the spectral domain, the moments of the coupling coefficients,
i.e., the matrix elements, are in the form of infinite integrals over
the spectral variable. Several spectral domain approaches have
been applied in the literature on planar guiding structures [5],
[6]. In the spatial domain, the elements of the coupling matrix
are expressed as finite integrals over the geometrical spatial vari-
ables, which can be evaluated efficiently. On the other hand, the
evaluation of the Green’s functions in the spatial domain results
in infinite integrals of the Sommerfeld type. The discrete com-
plex image method (DCIM) can be used in order to accelerate
the evaluation of this integral [7]. Several spatial domain MoM
have been applied in the literature on multiconductor [8]–[13]
and on multislot [7] guiding structures.

All the formulations presented in the literature, as far
as we know, treated either a multiconductor or a multislot
planar guiding structure. In this paper, a generalized full-wave
approach is presented which is capable of analyzing planar
guiding structures consisting of both multiconductor and multi-
slot. The approach is based on the integral equation formulation
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Fig. 1. Planar guiding structure. (a) Original problem. (b) Equivalent
problems.

solved by the MoM in the spatial domain. In Section II, the
problem under investigation is stated and the notations used
are introduced. In Section III, the solution of the individual
subregions is presented. An efficient recursive technique for
linking the subregion solutions is presented in Section IV.
The procedures for evaluating the modal current distribution
is presented in Section V. The modal power together with the
modal characteristic impedance are evaluated in Section VI.
The presented theory is validated by studying number of planar
guiding structures in Section VII.

II. PROBLEM STATEMENT

A general planar guiding structure is shown in Fig. 1(a). It
consists of an arbitrary number of strips and slots embedded in
a stack of dielectric layers. This guiding structure is capable of
supporting a number of fundamental modes equal to the total
number of strips and slots excluding the infinite perfect elec-
tric conductor (PEC) planes, if any. The dielectric layers are as-
sumed to extend infinitely in the lateral plane which lies normal
to the direction of stratification. Each strip is characterized by
its central location, width, thickness, and conductivity. The slots
are carried by PEC planes which, as the abbreviation implies, are
assumed to have infinite conductivity. Consequently, the PEC
acts as a perfect conducting shielding plane whose thickness is
insignificant. Each slot is characterized by its central location
and width.

The first step in the solution is to apply the electromagnetic
equivalence principle which allows the reduction of the slots in
the PEC planes. The electric field of each slot is represented
by equivalent magnetic currents located on both sides of the
PEC with the same width as the reduced slot. The magnetic cur-

rents are infinitely extending along the propagation direction,
and they will be referred to as magwires, see Fig. 1(b).

The original problem of Fig. 1(a) has been transformed to a
number of equivalent problems, subregions, each of which con-
sists of a number of strips and magwires embedded in a reduced
set of dielectric layers, as shown in Fig. 1(b). Each subregion
is solved separately in Section III. The subregion solutions are
linked together in Section IV via the application of the proposed
recursive technique. The objective is to evaluate, for each mode,
the propagation constant, the dispersion curve, the modal longi-
tudinal and transversal electric and magnetic current, the modal
power, and the modal characteristic impedance.

III. SOLVING SUBREGIONS

A. Matrix Formulation

Following the integral equation formulation, the fields can be
expressed in terms of the Green’s functions and the currents on
the strips and magwires through a convolution integral

(1)

(2)

(3)

(4)

where, for the fields on the left-hand sides, the first letter in
the subscript indicates the order of the observation interface.
The second letter, , indicates a lateral field component. The
third letter in the subscript is the order of the interface carrying
the source. The superscript indicates the type of the source:
for electric current and for magnetic current. The operators

and refer
to the lateral part of the nabla operator in the observation and
the source domains, respectively. The derivative with respect
to , , is replaced by , because it is assumed that the

-dependence of all fields takes the form , where is the
unknown propagation constant to be determined iteratively. is
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the spatial domain Green’s function whose spectral part can be
calculated using the technique presented in [14]. The superscript
of any Green’s function consists of three letters. The first letter
indicates the type of the field to be observed, stands for electric
field, while stands for magnetic field. The second and third
letters are related to the source. The second letter indicates the
type of the current, for electric and for magnetic. The third
letter is set to if the current source is directly used, while it is
set to if the charge derived from the current source is used.
or are the electric or magnetic current on the th interface,
respectively.

The next step is to expand the unknown electric and mag-
netic currents in terms of known basis functions weighted by
unknown expansion coefficients. The longitudinal current is ex-
panded using rectangular functions , while triangular basis
functions are used to expand the transversal current

otherwise
(5)

otherwise
(6)

where is the half-span and the full-span of the triangular and
the rectangular basis functions, respectively. Using these basis
functions, the current expansion can be written, and then, by ap-
plying an appropriate testing procedure, (1)–(4) can be written
in a matrix form as follows:

(7)

where the superscripts and mean magnetic current or
magnetic field located or observed at the top shielding layer
and the bottom shielding layer, respectively. , , and

are the total (both - and -directed) number of basis
functions representing the electric current, magnetic current
on the top shielding layer, and magnetic current on the bottom
shielding layer, respectively. The quantities under the braces
are the dimensions of the submatrices. The subvectors ,

, and are the unknown expansion coefficients

of the basis functions for the electric current, magnetic current
on the top shielding layer, and magnetic current on the bottom
shielding layer, respectively. The subvectors , , and

are the tested tangential electric field on the strips,
tangential magnetic field on the top magwires, and tangential
magnetic field on the bottom magwires, respectively. The
coupling matrices on the left-hand side of (7) are referred to as

the first level coupling matrices and are denoted by . The
elements of these matrices are given in Appendix I.

B. Strips Reduction

Imposing the impedance boundary conditions on the strips,
the first row of (7) can be rewritten as follows:

(8)

(9)

where the th element of the vector in (8) can be written as
follows:

(10)
where is the test function centered around ,
is the -directed electric current which has been expanded as

. is the equivalent surface impedance
on the strip carrying the th test function

(11)

where , , and are the permeability, conductivity, and
thickness of the conductor carrying the th test function, respec-
tively. The expression given in (11) is derived in Appendix II. It
can efficiently account for the thickness and finite conductivity
of the conductor as long as its thickness is much smaller than its
width. This assumption is satisfied for most practical situations.
It has been demonstrated in [15] that, for the selected types of
basis functions, the optimum choice of the test function is
the rectangular function . Consequently, three basis functions
are overlapping with the domain of the test function ,
namely , and [see Fig. 2(a)].

Performing the inner product in (10), after simple manipula-
tion, one can write

(12)
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Fig. 2. Basis functions overlapping with the domain of a test function: (a)
transversal and (b) longitudinal current.

where is the full-span and the half-span of the rectangular test
function and the triangular basis function, respectively, centered
around . It is assumed in writing (12) that the adjacent basis
functions have the same span. However, basis functions located
on different strips can have different spans. Substituting (12)
into (8), one can write

(13)

where the matrix is the modified coupling matrix at
the first level, which takes the form shown in (14) at the bottom
of this page.

Similarly, the same analysis is performed on (9), taking into
account that in testing the -directed electric current the th
test function is overlapping with the th basis function only, as
shown in Fig. 2(b). The manipulation yields the following equa-
tions:

(15)

...
...

. . .
...

...

(16)

Substituting (13) and (15) into (8) and (9), and combining the
resulting equations, one can write

(17)

where the matrix is a modified version from the ma-

trix , where the diagonal submatrices of the former
can be expressed in terms of the diagonal submatrices of the
latter as stated in (14) and (16). It is worth noting that, for the
special case of a perfectly conducting strip with zero thickness,
the boundary condition requires the tangential electric field to

vanish on the strip. Consequently, the matrix is

identical to the matrix for this special case.
Using (17), the electric current on the strips can be expressed

in terms of the magnetic current on the magwires in both
shielding layers

(18)

...
...

...
. . .

...
...

... (14)
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Substituting (18) into the second and the third rows of (7), and
after some manipulations, the following equation can be written:

(19)

where the submatrices on the left-hand side of (19) are referred
to as the second level coupling matrices, which can be expressed
in terms of the first level coupling matrices as follows:

(20)

(21)

(22)

(23)

At the end of the subregion solving procedure, the matrix
equation representing the subregion is modified from (7) to (19).
In (19), the electric current on the strips has disappeared, as a
consequence of the application of the boundary conditions on
the strips. The magnetic field on the magwires is expressed in
terms of the magnetic currents flowing on them, through higher
level coupling coefficients which internally take the coupling
through the strips into account. The above procedure is applied
to all the subregions in the problem, one by one. The remaining
boundary conditions to be satisfied are the continuity of the elec-
tric field and the magnetic field through the slots, located in the
PEC shielding layers. This will be carried out in the next section.

IV. LINKING SUBREGION SOLUTIONS

The linking of two subregions means satisfying the boundary
conditions on the slots located in the common shielding layer.
It is assumed that the strips have been eliminated from all the
subregions in the previous step. The linking procedure starts
from the top-most subregion toward the bottom-most one in a
recursive algorithm. Considering the first, the top-most, and the

second subregion, their matrix formulations can be written as
follows:

(24)

(25)

where the subscripts 1 and 2 are used for the matrix formula-
tion of the first and second subregions, respectively. The con-
tinuity of the tangential electric field along the common slots
requires that the magnetic current flowing along the magwires
at both sides of the common shielding layer are equal in mag-
nitude and opposite in direction. Mathematically, this statement
can be written as follows:

(26)

The remaining boundary condition to be satisfied is the con-
tinuity of the tangential magnetic field

(27)

Using (26) and (27) in (24) and (25) yields

(28)

Substituting (28) into the bottom row of (25), after simple
manipulation, yields

(29)

where is referred to as the third level coupling
matrix, which can be written in terms of the second level cou-
pling matrices as follows:

(30)

Equation (29) can be considered as the matrix formulation
of the first and second subregions after linking them together.
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It represents the coupling between the magnetic current on the
bottom shielding layer of the second subregion and the magnetic
field observed on that shielding layer. The third level coupling
matrix used in this equation takes into account the presence of
magnetic current on the bottom and the top shielding layers of
the first and second subregions, respectively. It is expressed in
terms of the second level coupling matrices of both subregions
[see (30)]. As shown in the previous section, the second level
coupling matrices take the coupling through the strips, in their
subregions, into account. Consequently, (29) incorporates all
coupling mechanisms in both subregions, and solving this equa-
tion for yields all the remaining unknowns using (28)
and (18). Comparing (24) and (29), it is clear that they are iden-
tical except for the type of the coupling matrices, second level
and third level, respectively. Consequently, the linking proce-
dure explained can be applied in a recursive way starting with
the second subregion and ending with the last but one subregion,
the th subregion. The recursive system, for evaluating the
third level coupling matrices, can be described in terms of (30)
and the general equation relating the th and the th ma-
trices as

(31)

It is instructive to write down the magnetic current in the top
and bottom shielding layers of the th and the th sub-
regions, respectively, in terms of the magnetic current on the
bottom shielding layer of the th subregion

(32)

The final step is to link the bottom-most subregion, the th,
with the th subregion. The latter subregion has been
constructed by linking all the subregions above the bottom-most
one. The matrix formulations representing both subregions can
be written as follows:

(33)

(34)

The continuity of the tangential electric and magnetic fields
requires that: and , re-

Fig. 3. Flowchart of the major steps of the solution procedure.

spectively. Substituting these boundary conditions into (33) and
(34) results in

(35)
Equation (35) carries all the physics of the problem as the

mutual coupling in all subregions, including coupling through
strips and magwires, are incorporated in this equation. The en-
tire problem with all its subregions, strips, and slots is shrinked
into an equation involving the slots of the bottom-most subre-
gion. In order to obtain a nontrivial solution of this equation, the
determinant of the matrix on the left-hand side should vanish:

(36)
This equation is referred to as the characteristic equation,

the value of the determinant on the left-hand side depends on
the propagation constant in the longitudinal direction, . This
equation is solved iteratively, using Muller’s method [16], for
the unknown propagation constant . A large number of roots
can be found for the characteristic equation. Among them are
the propagation constants of the fundamental modes of the
planar guiding structure. The rest correspond to the higher
order modes. The whole iterative procedure can be summarized
in the flowchart of Fig. 3.

V. MODAL CURRENT DISTRIBUTION

Unlike the strips reduction and the linking procedures, the
problem is going to be expanded again during the evaluation of
the modal currents. After obtaining the propagation constants,
(35) can be solved for the magnetic current in the top shielding
layer of the bottom-most subregion. Applying a 180 phase
shift, the magnetic current on the opposite side of the shielding
layer, in the th subregion, can be obtained. Using (32),
the magnetic current on the top shielding layer of the th
subregion can be obtained using the already calculated magnetic
current on its bottom shielding layer. This procedure is executed
recursively, using (32), starting from the th subregion
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Fig. 4. Evaluation of the modal current distribution. (a) Magnetic current.
(b) Electric current.

until the first subregion. Consider, for example, a planar guiding
structure like that shown in Fig. 4. The procedure of evaluating
the modal magnetic current distribution in all subregions is il-
lustrated in Fig. 4(a).

After evaluating the magnetic currents, each subregion is
treated individually in order to evaluate the electric currents
on its strips. For this purpose, (18) is used, which expresses
the electric current in terms of the magnetic currents on both
the top and the bottom shielding layers of a subregion. The
procedure for evaluating the electric currents, for the same
example, is illustrated in Fig. 4(b).

VI. MODAL POWER AND MODAL CHARACTERISTIC IMPEDANCE

The power penetrating the cross section of a general planar
guiding structure can be written as follows:

(37)
where “ ” means “the real part of,” and will be suppressed
throughout. The summation is carried out over all subregions

, all layers belonging to the subregion , and all basis func-
tions of both electric and magnetic type located inside the sub-
region (see Fig. 5). and are the coordinates of the
lower and the upper interfaces, respectively, bounding the corre-
sponding layer. and are the electric and the mag-
netic field, respectively, in the th layer of the th subregion due
to the th basis function. In order to perform the integration over
the axis analytically, Parseval’s theorem is used to transform
(37) to the spectral domain

(38)
where lower case letters represent spectral domain quantities,
is the spectral counterpart of the spatial variable . The electric

Fig. 5. Evaluation of the modal power.

and the magnetic fields of a basis function can be written in
terms of the fields of a unit filamentary source located at the
same interface as the basis function as follows:

(39)

(40)

where and are the electric and the magnetic field,
in the th layer located within the th subregion, of a unit fila-
mentary source of the same type and located in the same inter-
face as the corresponding th basis function. If evaluated at the
interfaces, these quantities are essentially the spectral domain
Green’s functions. is the basis function in the spectral do-
main, which can be obtained by applying the Fourier transform
operator on (5) and (6), to yield

(41)

(42)

where and are the spectral counterparts of the spatial basis
functions and , respectively. The use of small letters for rep-
resenting the spectral functions is avoided here in order not to
confuse with and which have other meanings. Equations
(41) and (42) represent the spectral counterpart of spatial basis
functions centered at the origin. In general, the spectral domain
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equivalent of a spatial function centered around can be ob-
tained by multiplying (41) and (42) by . Substituting (39)
and (40) into (38) and rewriting it in a more compact form yields

(43)

where is the modal power flowing through the cross section
of the th layer which is located in the th subregion. It can be
written as follows:

(44)
Decomposing the electromagnetic fields into TE and TM

components [14] and omitting the subscripts and the su-
perscript from the field quantities, (44) can be rewritten as
follows:

(45)

The -dependencies (in the spectral domain) of all field com-
ponents of both the TE and the TM system are known analyt-
ically. The values of the reflection coefficients and ,
which appear in the field expressions in [14], depend only on
whether the basis function is located above or under the th layer.
Hence, the summation over the basis functions can be split into
two summations: the first one is over the basis functions located
above the th layer, while the second one is over the basis func-
tions under the th layer. Consequently, one can write the modal
power in the th layer located in the th subregion as follows:

(46)

where the subscripts and denote a basis function located
above and under the th layer, respectively. The power terms in
(46) can be written as follows:

(47)

(48)

(49)

(50)

Fig. 6. Canonical structures to the CPW (all dimensions are in �m). (a) CPW
line. (b) Finite ground CPW. (c) Dropped central strip finite ground CPW.
(d) Dropped central strip CPW.

where and . ,

, , and are precalculated spectral domain
coefficients [14]. The integrals in (47)–(50) can be evaluated
analytically. The remaining integral in (46) along the spectral
variable is evaluated numerically. It is worth mentioning that
this integral is evaluated a single time for each mode for each
frequency point. Consequently, a high degree of computation
efficiency is not required for the evaluation of this integral.
After evaluating the modal power, the modal characteristic
impedance can be obtained as follows:

(51)

where and are the modal current and the modal voltage,
respectively.

VII. NUMERICAL RESULTS

In this section, the presented theory is applied on a number of
planar guiding structures. These structures can be considered as
canonical problems to the CPW line. Consequently, comparing
the results of these problems with each other and with the CPW
provides a self-contained validation procedure. The CPW line
together with its canonical structures are shown in Fig. 6. For
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Fig. 7. Effective dielectric constant versus frequency for the CPW line of
Fig. 6(a). Three segments are used to represent each slot.

these structures, the conductors are assumed perfect with zero
thicknesses.

The effective dielectric constant versus frequency for the
conventional CPW of Fig. 6(a) is plotted in Fig. 7 using
three segments for representing each slot. The calculations are
also performed using HP-Momentum, for comparison, also
using three segments of the same width per slot. Perfect
agreement is observed for mode #1 (odd). HP-Momentum
is not able to provide results for mode #2 (even) of the CPW.
The modal current distributions of the CPW are well known
and, consequently, they are not presented. The computation
time per frequency point for each mode of problem 6(a)
using the proposed formulation is 4 s on an HP-9000/782
workstation.

The first canonical problem to the CPW is the finite ground
CPW which is formed using three coplanar strips, as shown in
Fig. 6(b). The central strip is identical to that of the CPW. The
outer strips are sufficiently large to serve as an electrically infi-
nite ground planes. Unlike the CPW line, the triple-stripline has
three fundamental modes. The longitudinal and the transversal
modal current distributions of the triple-stripline are plotted in
Fig. 8(a) and (b), respectively. The outer strips are represented
using 20 segments, while five segments are used to represent the
central strip. The modal current distributions shown in Fig. 8 are
calculated at 15 GHz.

The distribution of the transversal current is 90 leading in
phase with respect to that of the longitudinal current distribu-
tion. Observing the longitudinal electric current distribution of
mode #1 in Fig. 8(a), the currents flowing in the outer strips are
identical in phase and magnitude, while they are out-of-phase
with the current in the central strip. Consequently, this mode
can be considered as analogous to the odd mode of the CPW.
For mode #2, the longitudinal currents in the outer strips are
equal in magnitude and out-of-phase, while the current flowing
in the central strip cancel each other in the integral sense. As a
result, we can consider mode #2 as analogous to the even mode
of the CPW. The extra mode, #3, of the triple-stripline has all its
longitudinal currents in-phase as shown in Fig. 8(a). It is worth
mentioning that mode #3 cannot be practically used in transmit-
ting power through the guiding structure as the return path of the

Fig. 8. Normalized modal current distribution of the triple-stripline:
(a) longitudinal and (b) transversal. Twenty and five segments are used to
represent the outer and the central strips, respectively, f = 15 GHz.

current is theoretically located at . Monitoring the transversal
current distribution of the three modes in Fig. 8(b), we observe
that the phase relations between the currents on the three strips
are opposite to the corresponding relations for the longitudinal
currents.

The second canonical problem is shown in Fig. 6(c). This
structure is formed from the coplanar triple-stripline by
dropping the central strip to an intermediate interface laying
10 m below the interface carrying the outer strips. Physically,
this structure should behave almost identical to the coplanar
triple-stripline of Fig. 6(b). The modal current distributions
of this canonical problem have been evaluated and were
found to be identical to the distributions presented in Fig. 8.
The computation time per frequency point for each mode of
problems 6(b) and (c) using the proposed formulation, is 15 s
on an HP-9000/782 workstation.

The last canonical problem of the CPW line is shown
in Fig. 6(d). It has been constructed from the CPW line of
Fig. 6(a) by dropping the central strip to the same intermediate
interface as used in the problem of Fig. 6(c). This structure
consists of a single slot in the top subregion and a strip and a
slot in the bottom subregion. Consequently, two modes should
be considered for this structure. Fig. 9(a) and (b) shows the
longitudinal and the transversal modal current distributions,
respectively, for the two fundamental modes. The slot has been
represented using 25 segments, while 15 segments were used
to represent the strip.
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Fig. 9. Normalized modal current distribution of the dropped central strip
CPW. (a) Longitudinal. (b) Transversal. Twenty-five and 15 segments are used
to represent the slot and the strip, respectively, f = 15 GHz.

Fig. 10. Effective dielectric constant versus frequency for all the propagating
modes of the four canonical problems of Fig. 6.

The modal current calculations are performed at 15 GHz. The
transversal current is leading 90 in phase with respect to the
longitudinal current. Monitoring the longitudinal current distri-
bution of mode #1, it is clear that the magnetic current distri-
butions near the edges of the slot are equal in magnitude and

out-of-phase. Moreover, the electric current distribution on the
strip has a significant contribution in the integral sense. Conse-
quently, this mode is analogous to the odd mode of the CPW.
Mode #2 has equivalent magnetic currents near the edges of the
slot with the same magnitude and phase. In addition, the elec-
tric current on the strip has no integral contribution as observed
for mode #2 in the previous two canonical problems. Conse-
quently, mode #2 is analogous to the even mode of the CPW
line. The computation time per frequency point for each mode
of problem Fig. 6(d) using the proposed formulation is 20 s on
an HP-9000/782 workstation.

The effective dielectric constant of all the fundamental modes
for the four problems of Fig. 6 are plotted versus frequency in
Fig. 10. The figure shows that the results for mode #1 are very
close to each other in all the four problems. For mode #2, the
agreement between the four problems is still good, but not as
good as for mode #1. The little deviation for mode #2 can be
attributed to the loosely bound nature of the field of the even
mode which makes it more sensitive to the truncation of the
ground planes. The third mode of problem Fig. 6(b) is in excel-
lent agreement with the third mode of problem Fig. 6(c). Based
on the very good agreement between the four canonical prob-
lems, the calculated results are validated.

It is worth mentioning here that several other types of
planar guiding structures, such as microstrip lines, slotlines,
and coupled microstrip lines with different conductors’ types
and thicknesses and embedded in different layer structures,
are studied. The results are, whenever possible, compared
with those of HP-Momentum. The comparisons show perfect
agreement for both the effective dielectric constant and the
characteristic impedance calculations.

VIII. CONCLUSION

This paper presents a generalized theory for solving planar
guiding structure problems. The guiding structure under inves-
tigation consists of an arbitrary number of slots and strips of
arbitrary widths, thicknesses, and conductivity. The solution
is based on the integral equation formulation which has been
solved by the MoM. The integral equation is formulated in
the spatial domain. All information about the fundamental
modes supported by the guiding structure is available. This
information includes the modal propagation constant, the
longitudinal and the transversal modal electric and magnetic
current distribution, the dispersion curves, the modal power,
and the modal characteristic impedance.

The presented full-wave techniques in the literature deal with
either multiconductor or multislot planar guiding structures. In
this paper, both types are brought together in a single frame. In
this frame, the original problem is split into subproblems, subre-
gions, due to the presence of several PECs carrying slots. Each
subregion is solved separately taking all coupling mechanisms
into account. A new numerically efficient recursive technique
has been presented for linking the solutions of these subprob-
lems together at the end and to evaluate the modal current distri-
bution of the guiding structure. The proposed theory is applied
to number of canonical problems, which cannot be solved using
the commercial software. The agreement between the calculated
results validates the implementation of the theory.
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APPENDIX I
FIRST LEVEL COUPLING MATRICES

Each submatrix on the left-hand side of (7) consists of four
submatrices

(52)

where refers to the basis functions of electric or magnetic
current directed either in the or in the direction. Similarly,

refers to the observation fields, electric or magnetic, polarized
in either the or direction. Following (52), the elements in the
submatrices of the left-hand side of (7) take the following form:

(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)

where the subscripts and on the left-hand side are the
orders of the test and the basis function, respectively, which
correspond to the row and the column order, respectively,
in the submatrix. The subscripts and of the Green’s
functions refer to the order of the interface carrying the test
and the basis functions, respectively. and are the center
coordinates of the test and the basis function, respectively.
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Fig. 11. Cross section of a current carrying conducting layer.

The operation means innerproduct, while means
convolution:

(69)

(70)

where and are the domains of the test and the basis func-
tions, respectively. and are the derivatives of the basis
functions and , respectively. The superscripts and , indi-
cating top and bottom shielding layers, have been removed from
(53)–(68) as the expressions of the coupling coefficients are
the same for both of them. In (53)–(68), the razor-blade testing
scheme is adopted because it gives more physical modal cur-
rent distribution near the edges than that obtained using Galerkin
testing [15].

APPENDIX II
EQUIVALENT SURFACE IMPEDANCE

In this Appendix, the formula used for the surface impedance
in (11) is derived. Fig. 11 shows a conductor layer with thickness

, conductance , and permeability . The conductor is assumed
to extend infinitely in the lateral direction. This assumption is
reasonable as long as the conductor width is much larger than
its thickness. The current density penetrating the cross section
of the conductor can be expanded in terms of its values at the
two surfaces as follows (see Fig. 11):

(71)

where and are the electric current density on
the top and the bottom surface of the conductor, respectively.
is the axis normal to the conductor layer and is the skin depth:

. The longitudinal current can be obtained
by integrating the current density in (71) along the conductor
thickness

(72)

Since , one can write the following equations
at the top and the bottom surfaces of the conductor:

(73)

(74)

Summing (73) and (74), we have

(75)
Writing the surface impedance boundary condition yields

(76)

Comparing (72), (75), and (76) yields the required expression
for the equivalent surface impedance

(77)
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